execve_hook/execve_intercept.c

501 lines
16 KiB
C

#define _GNU_SOURCE
#include <dlfcn.h>
#include <errno.h>
#include <errno.h> // 添加 errno 相关定义
#include <fcntl.h>
#include <json-c/json.h>
#include <signal.h> // 添加 SIGCHLD 相关定义
#include <stdbool.h> // 引入 bool 类型
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/ipc.h>
#include <sys/select.h> // 添加 select 相关定义
#include <sys/shm.h>
#include <sys/stat.h>
#include <time.h>
#include <unistd.h>
#include <pty.h>
#ifdef DEBUG
#define DEBUG_LOG(fmt, ...) \
fprintf(stderr, "[DEBUG] %s:%d:%s(): " fmt "\n", __FILE__, __LINE__, \
__func__, ##__VA_ARGS__)
#else
#define DEBUG_LOG(fmt, ...) ((void)0)
#endif
#define CONFIG_FILE "/tmp/exec_hook/config/execve_rules.json"
#define LOG_FILE "/tmp/exec_hook/logs/execve.log"
#define LOG_OUT_FILE "/tmp/exec_hook/logs/execve_out.log"
#define COMMAND_NOT_FOUND "/usr/lib/command-not-found"
#define ANSI_COLOR_RED "\033[31m"
#define ANSI_COLOR_YELLOW "\033[33m"
#define ANSI_COLOR_RESET "\033[0m"
#define SHM_KEY 12345 // 用于标识共享内存的键值,需要确保唯一性
#define MAX_RULES 100 // 假设最大规则数量
#define MAX_ARGS 10 // 支持最多 10 个参数
typedef struct {
char cmd[256];
char type[32];
char msg[1024];
char args[MAX_ARGS][256]; // 支持最多 MAX_ARGS 个参数
int arg_count;
} Rule;
typedef struct {
bool enabled;
Rule rules[MAX_RULES];
int rule_count;
} ConfigData;
// 全局变量,指向共享内存中的配置数据
static ConfigData *shared_config = NULL;
static int shm_id = -1;
static time_t last_modified_time = 0;
// static int is_initialized = 0;
// 加载配置到共享内存
int load_config_to_shm() {
DEBUG_LOG("Loading configuration from %s to shared memory", CONFIG_FILE);
json_object *root = json_object_from_file(CONFIG_FILE);
if (!root) {
DEBUG_LOG("Failed to parse config file from %s", CONFIG_FILE);
return -1;
}
ConfigData temp_config;
temp_config.enabled = false;
temp_config.rule_count = 0;
json_object *enabled_obj;
if (json_object_object_get_ex(root, "enabled", &enabled_obj)) {
temp_config.enabled = json_object_get_boolean(enabled_obj);
}
if (!temp_config.enabled) {
json_object_put(root);
return 0; // 功能未启用,不加载规则
}
json_object *rules_array_obj;
if (json_object_object_get_ex(root, "rules", &rules_array_obj) &&
json_object_get_type(rules_array_obj) == json_type_array) {
int rules_len = json_object_array_length(rules_array_obj);
temp_config.rule_count = rules_len < MAX_RULES ? rules_len : MAX_RULES;
for (int i = 0; i < temp_config.rule_count; i++) {
json_object *rule_obj =
json_object_array_get_idx(rules_array_obj, i);
json_object *cmd, *type, *msg, *args;
json_object_object_get_ex(rule_obj, "cmd", &cmd);
json_object_object_get_ex(rule_obj, "type", &type);
json_object_object_get_ex(rule_obj, "msg", &msg);
if (cmd)
strncpy(temp_config.rules[i].cmd, json_object_get_string(cmd),
sizeof(temp_config.rules[i].cmd) - 1);
if (type)
strncpy(temp_config.rules[i].type, json_object_get_string(type),
sizeof(temp_config.rules[i].type) - 1);
if (msg)
strncpy(temp_config.rules[i].msg, json_object_get_string(msg),
sizeof(temp_config.rules[i].msg) - 1);
// 解析 args 参数
temp_config.rules[i].arg_count = 0;
if (json_object_object_get_ex(rule_obj, "args", &args) &&
json_object_get_type(args) == json_type_array) {
int args_len = json_object_array_length(args);
temp_config.rules[i].arg_count =
args_len < MAX_ARGS ? args_len
: MAX_ARGS; // 限制最多 MAX_ARGS 个参数
for (int j = 0; j < temp_config.rules[i].arg_count; j++) {
json_object *arg_item = json_object_array_get_idx(args, j);
if (arg_item) {
strncpy(temp_config.rules[i].args[j],
json_object_get_string(arg_item),
sizeof(temp_config.rules[i].args[j]) - 1);
}
}
}
}
}
json_object_put(root);
// 将临时配置复制到共享内存
memcpy(shared_config, &temp_config, sizeof(ConfigData));
DEBUG_LOG("Loaded %d rules to shared memory", shared_config->rule_count);
return 0;
}
// 检查 args 是否匹配
int args_match(char *const argv[], Rule *rule) {
DEBUG_LOG("Matching args for rule with cmd: %s", rule->cmd);
if (rule->arg_count == 0) {
return 1; // 没有 args 约束,则直接匹配
}
for (int i = 0; i < rule->arg_count; i++) {
int found = 0;
for (int j = 1; argv[j] != NULL; j++) { // 跳过 argv[0] (命令本身)
if (strcmp(argv[j], rule->args[i]) == 0) {
found = 1;
break;
}
}
if (!found) return 0; // 只要有一个参数没有匹配,则不符合规则
}
return 1;
}
// 写入日志
void write_log(const char *filename, char *const argv[]) {
DEBUG_LOG("Writing exec log for command: %s", filename);
time_t now;
time(&now);
FILE *log = fopen(LOG_FILE, "a");
if (!log) return;
fprintf(log, "[%s] Command: %s\n", ctime(&now), filename);
for (int i = 0; argv[i]; i++) {
fprintf(log, "arg[%d]: %s\n", i, argv[i]);
}
fclose(log);
}
// 判断字符是否为 ANSI 转义序列
int is_ansi_escape_sequence(const char *str) {
// ANSI 转义序列的常见格式是以 ESC 开头,后跟 '[', 'm' 等
return str[0] == '\033' && str[1] == '[';
}
// // 保存原始的 write 函数指针
// static ssize_t (*original_write)(int fd, const void *buf, size_t count) =
// NULL;
// // 保存日志文件描述符
// static int log_fd = -1;
// ssize_t write(int fd, const void *buf, size_t count) {
// ssize_t result = -1;
// result = original_write(fd, buf, count);
// // 如果原始 write 成功,则将相同的内容写入日志文件
// if (result > 0 && log_fd != -1) {
// ssize_t log_result = original_write(log_fd, buf, count);
// if (log_result == -1) {
// fprintf(stderr, "Error writing to log file: %s\n",
// strerror(errno));
// // 注意:这里不应该影响原始 write 的返回值
// }
// }
// return result;
// }
typedef int (*orig_execve_type)(const char *filename, char *const argv[],
char *const envp[]);
// 原始指针
static orig_execve_type orig_execve = NULL;
// 判断父进程是否为终端 shell (bash, zsh, fish 等)
int is_terminal_shell() {
pid_t ppid = getppid();
char path[64], proc_name[256];
FILE *file;
snprintf(path, sizeof(path), "/proc/%d/comm", ppid);
file = fopen(path, "r");
if (!file) return 0;
if (fgets(proc_name, sizeof(proc_name), file)) {
proc_name[strcspn(proc_name, "\n")] = 0; // 去除换行符
if (strcmp(proc_name, "bash") == 0 || strcmp(proc_name, "zsh") == 0 ||
strcmp(proc_name, "fish") == 0 || strcmp(proc_name, "sh") == 0) {
fclose(file);
return 1;
}
}
fclose(file);
return 0;
}
// 检查配置文件是否已修改
int config_file_modified() {
struct stat file_stat;
DEBUG_LOG("Checking if config file has been modified: %s", CONFIG_FILE);
if (stat(CONFIG_FILE, &file_stat) != 0) {
DEBUG_LOG("Cannot get stat for FILE: %s", CONFIG_FILE);
return 0;
}
int isChanged = file_stat.st_mtime != last_modified_time;
if (isChanged != 0) {
DEBUG_LOG("Updating last_modified_time to: %ld", file_stat.st_mtime);
last_modified_time = file_stat.st_mtime;
return 1;
}
return 0;
}
// 加载或重新加载配置到共享内存
void load_config_if_needed() {
if (shared_config == NULL) {
// 首次加载,创建共享内存
DEBUG_LOG("Creating shared memory for config data");
shm_id = shmget(SHM_KEY, sizeof(ConfigData), IPC_CREAT | 0644);
if (shm_id == -1) {
perror("shmget failed");
return;
}
shared_config = (ConfigData *)shmat(shm_id, NULL, 0);
if (shared_config == (void *)-1) {
perror("shmat failed");
shared_config = NULL;
return;
}
// 首次加载时读取配置文件
DEBUG_LOG("Loading config file for the first time");
struct stat file_stat;
if (stat(CONFIG_FILE, &file_stat) == 0) {
last_modified_time = file_stat.st_mtime;
load_config_to_shm();
} else {
DEBUG_LOG("Cannot get stat for FILE: %s", CONFIG_FILE);
// 初始化一个空的配置
shared_config->enabled = false;
shared_config->rule_count = 0;
}
} else if (config_file_modified()) {
DEBUG_LOG("Config file has been modified.");
load_config_to_shm();
} else {
DEBUG_LOG("Config file has not been modified, skipping reload.");
}
}
// 复制 stdout/stderr 到日志文件,同时保留终端颜色
void duplicate_output_to_log() {
DEBUG_LOG("Duplicating stdout/stderr to log file: %s", LOG_OUT_FILE);
int log_fd = open(LOG_OUT_FILE, O_WRONLY | O_CREAT | O_APPEND, 0644);
if (log_fd == -1) {
perror("Failed to open log file");
return;
}
int master_fd, slave_fd;
if (openpty(&master_fd, &slave_fd, NULL, NULL, NULL) == -1) {
perror("openpty failed");
close(log_fd);
return;
}
pid_t pid = fork();
if (pid == -1) {
perror("fork failed");
close(log_fd);
close(master_fd);
close(slave_fd);
return;
}
if (pid == 0) { // 子进程
close(master_fd);
// 连接 slave_fd 到标准输入输出错误
dup2(slave_fd, STDIN_FILENO);
dup2(slave_fd, STDOUT_FILENO);
dup2(slave_fd, STDERR_FILENO);
close(slave_fd);
// 子进程不做输出,只保留环境等待 execve
return; // 留给你调用 execve
}
// 父进程(主控):读取 master_fd 并写入 stdout + 日志
close(slave_fd);
// 忽略子进程退出信号
signal(SIGCHLD, SIG_IGN);
char buffer[1024];
ssize_t n;
int has_error = 0;
while ((n = read(master_fd, buffer, sizeof(buffer))) > 0) {
// 检查错误
if (memmem(buffer, n, "error", 5) ||
memmem(buffer, n, "Error", 5) ||
memmem(buffer, n, "ERROR", 5)) {
has_error = 1;
}
// // 输出到终端
// if (write(STDOUT_FILENO, buffer, n) == -1) {
// perror("Failed to write to stdout");
// }
// 写入日志
if (write(log_fd, buffer, n) == -1) {
perror("Failed to write to log file");
}
}
if (has_error) {
printf("\n检测到命令执行出错,已经上报北冥论坛~ \n");
fflush(stdout);
}
close(master_fd);
close(log_fd);
}
int execve(const char *filename, char *const argv[], char *const envp[]) {
// if (!is_initialized) {
// initialize();
// }
DEBUG_LOG("Intercepted execve for: %s", filename);
DEBUG_LOG("argv[0] = %s", argv[0]);
orig_execve = (orig_execve_type)dlsym(RTLD_NEXT, "execve");
if (orig_execve == NULL) {
fprintf(stderr, "Error in dlsym(\"execve\"): %s\n", dlerror());
exit(EXIT_FAILURE);
}
// 加载配置(仅在需要时)
load_config_if_needed();
// 仅在 shell 终端调用 execve 时拦截
if (!is_terminal_shell()) {
DEBUG_LOG("Not a terminal shell, bypassing interception.");
return orig_execve(filename, argv, envp);
}
// 当前配置信息
DEBUG_LOG("Current Config rule count : %d", shared_config->rule_count);
// 如果共享内存未成功加载,则直接执行
if (shared_config == NULL) {
DEBUG_LOG("Shared memory not initialized, bypassing interception.");
return orig_execve(filename, argv, envp);
}
// 如果功能被禁用,则直接执行
if (!shared_config->enabled) {
DEBUG_LOG("Not enabled.");
return orig_execve(filename, argv, envp);
}
write_log(filename, argv);
const char *basename = argv[0];
if (strcmp(filename, COMMAND_NOT_FOUND) == 0 && argv[2]) {
basename = argv[2];
}
// 特殊处理以 shell.posix
// 方式执行的命令,直接执行,不进行规则匹配和输出重定向
if (argv[1] != NULL && strcmp(argv[1], "shell.posix") == 0) {
return orig_execve(filename, argv, envp);
}
for (int i = 0; i < shared_config->rule_count; i++) {
if (strcmp(basename, shared_config->rules[i].cmd) == 0 &&
args_match(argv, &shared_config->rules[i])) {
DEBUG_LOG("Rule matched: %s (type: %s)",
shared_config->rules[i].cmd,
shared_config->rules[i].type);
if (strcmp(shared_config->rules[i].type, "warn") == 0) {
printf(ANSI_COLOR_YELLOW "[Warning] %s\n" ANSI_COLOR_RESET,
shared_config->rules[i].msg);
printf("按下 'Y' 继续执行, 或按任意键取消: ");
char input = getchar();
if (input != 'Y' && input != 'y') {
printf("\nExecution cancelled.\n");
return -1;
}
printf("\nContinuing execution...\n");
} else if (strcmp(shared_config->rules[i].type, "error") == 0) {
printf(ANSI_COLOR_RED "[Error] %s" ANSI_COLOR_RESET "\n",
shared_config->rules[i].msg);
return -1;
}
break;
}
}
// 复制 stdout 和 stderr 到日志文件
duplicate_output_to_log();
return orig_execve(filename, argv, envp);
}
// // 构造函数,在库被加载时执行
// __attribute__((constructor)) static void initialize() {
// if (is_initialized) return;
// is_initialized = 1;
// DEBUG_LOG("Initializing execve_intercept library.");
// // // 获取原始的 write 函数
// // original_write = dlsym(RTLD_NEXT, "write");
// // if (original_write == NULL) {
// // fprintf(stderr, "Error in dlsym(\"write\"): %s\n", dlerror());
// // exit(EXIT_FAILURE);
// // }
// // // 打开日志文件,以追加模式打开,如果不存在则创建
// // log_fd = open(LOG_OUT_FILE, O_WRONLY | O_CREAT | O_APPEND, 0644);
// // if (log_fd == -1) {
// // fprintf(stderr, "Error opening log file \"%s\": %s\n",
// LOG_OUT_FILE,
// // strerror(errno));
// // exit(EXIT_FAILURE);
// // }
// load_config_if_needed();
// orig_execve = (orig_execve_type)dlsym(RTLD_NEXT, "execve");
// if (orig_execve == NULL) {
// fprintf(stderr, "Error in dlsym(\"execve\"): %s\n", dlerror());
// exit(EXIT_FAILURE);
// }
// }
// 在库卸载时分离和删除共享内存
__attribute__((destructor)) static void cleanup_shared_memory() {
DEBUG_LOG("execve_intercept library unloaded.");
// log输出路径
DEBUG_LOG("Log file: %s", LOG_FILE);
DEBUG_LOG("Log out file: %s", LOG_OUT_FILE);
DEBUG_LOG("Config file: %s", CONFIG_FILE);
DEBUG_LOG("Shared memory ID: %d", shm_id);
if (shared_config != NULL) {
DEBUG_LOG("Cleaning up shared memory.");
// 解除共享内存映射
if (shmdt(shared_config) == -1) {
perror("shmdt failed");
}
shared_config = NULL;
}
// if (log_fd != -1) {
// DEBUG_LOG("Closing log file descriptor.");
// close(log_fd);
// }
// 注意:这里不删除共享内存段,因为可能被其他进程使用。
// 如果需要删除,需要一个明确的机制来判断是否是最后一个使用者。
// 例如,可以创建一个单独的工具来管理共享内存的生命周期。
}